Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 2
1 0
2 0
1 0
2 0
Sample Output
1.500000
HINT
【数据规模】1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。
期望DP
n<=15,可以用到状态压缩
1 /*by SilverN*/ 2 #include3 #include 4 #include 5 #include 6 #include 7 #include 8 using namespace std; 9 const int mxn=120;10 int pw[mxn];11 int need[mxn];12 double sc[mxn];13 double p[mxn],f[mxn][1<<15];14 int k,n;15 int main(){16 int i,j,x;17 scanf("%d%d",&k,&n);18 pw[1]=1;19 for(i=2;i<=15;i++)pw[i]=pw[i-1]*2;20 for(i=1;i<=n;i++){21 scanf("%lf",&sc[i]);22 while(scanf("%d",&x) && x){23 need[i]|=pw[x];24 }25 }26 int ed=(1<
Description
你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关。在这个奖励关里,系统将依次随机抛出k次宝物,
每次你都可以选择吃或者不吃(必须在抛出下一个宝物之前做出选择,且现在决定不吃的宝物以后也不能再吃)。 宝物一共有n种,系统每次抛出这n种宝物的概率都相同且相互独立。也就是说,即使前k-1次系统都抛出宝物1(这种情况是有可能出现的,尽管概率非常小),第k次抛出各个宝物的概率依然均为1/n。 获取第i种宝物将得到Pi分,但并不是每种宝物都是可以随意获取的。第i种宝物有一个前提宝物集合Si。只有当Si中所有宝物都至少吃过一次,才能吃第i种宝物(如果系统抛出了一个目前不能吃的宝物,相当于白白的损失了一次机会)。注意,Pi可以是负数,但如果它是很多高分宝物的前提,损失短期利益而吃掉这个负分宝物将获得更大的长期利益。 假设你采取最优策略,平均情况你一共能在奖励关得到多少分值?Input
第一行为两个正整数k和n,即宝物的数量和种类。以下n行分别描述一种宝物,其中第一个整数代表分值,随
后的整数依次代表该宝物的各个前提宝物(各宝物编号为1到n),以0结尾。Output
输出一个实数,保留六位小数,即在最优策略下平均情况的得分。
Sample Input
1 2
1 0
2 0
1 0
2 0
Sample Output
1.500000
HINT
【数据规模】1<=k<=100,1<=n<=15,分值为[-10^6,10^6]内的整数。